Metrics to Characterize Temporal Patterns in Lifespans of Artifacts

Soumyo Moitra

Software Engineering Institute
Carnegie Mellon University
Pittsburgh, PA 15213
Metrics to Characterize Temporal Patterns
INTRODUCTION

This paper presents analysis of artifact lifespans
Based on observations over time

- Presence or absence of vulnerabilities seen
 - Network links up or down
 - Servers active or idle
- Seen or Unseen at t (1/0)

Lifecycle → Lifespan → Analysis
 → Stochastic Point Processes (Marked)
Illustrative examples presented ← Simulated data
Metrics for Pattern & Anomaly Detection

The goal is to track metrics
 – Baseline them
 – Establish thresholds
Alerts – Validation – Action
Background

Here we focus on Life History-based metrics

Many approaches to analyzing life histories

Not much analysis done for lifespans of artifacts

Development of appropriate metrics for lifespans that are not traditional lifecycles

Analyze time series constructed from temporal data (records)
Modeling Challenges

Not a traditional lifecycle

Something like a renewal process

Heterogeneous across the vulnerabilities

Need metrics to capture the lifespan features

Some existing metrics can be useful

Need some new concepts
New Metrics for Lifespans/Point Processes

Existing: Lifetimes (Π), Seen (Ψ), Mean Times Seen (<T>), etc.

New:

1) Transilience Φ: Count of ‘seen - then unseen’ sequences | W

2) Sequacity Ξ: Count of seen consecutively | W

3) Conformity C: How close an artifact is to the median value of the metric across all the artifacts?
Data, Methodology, Analysis

Simulated Lifespans of Vulnerabilities

← Mentions over time (1 or 0) by day
* 8 Lifespans & 14 days

Compute the metrics (Features) for each vulnerability
+ Functions of the metrics → New Features

9 Metrics or Features in all
Results of the Analysis (Simulated Data)

| | PI | PSI | (PI-PSI) | PHI10 | PI/(PI-PSI) | KSI | (KSI/PSI) | T | |T-2.13| | C |
|-------|------|------|----------|-------|-------------|------|-----------|-------|---|-----|------|
| | 14 | 14 | 5 | 12 | 8 | 10 | 14 | 14 | 14 | 14 |
| | 10 | 5 | 5 | 4 | 5 | 9 | 11 | 10 | 10 | 10 |
| | 4 | 9 | 0 | 8 | 3 | 1 | 3 | 4 | 4 | 4 |
| | 3 | 4 | 1 | 4 | 4 | 2 | 3 | 4 | 4 | 4 |
| | 3.5 | 1.6 | 99 | 1.5 | 2.7 | 10 | 4.7 | 3.5 | 3.5|
| | 6 | 0 | 4 | 0 | 1 | 7 | 7 | 5 | 5 | 5 |
| | 0.6 | 0 | 0.8 | 0 | 0.2 | 0.8 | 0.6 | 0.5 | 0.5|
| | 2.5 | 1 | 5 | 1 | 1.25 | 4.5 | 2.25 | 2 | 2 | 2 |
| | 0.38 | 1.13 | 2.88 | 1.13 | 0.88 | 2.38 | 0.13 | 0.13 | 0.13|
| | 2.67 | 0.89 | 0.35 | 0.89 | 1.14 | 0.42 | 8.00 | 8.00 | 8 | 8 |
Discussion of the Results

Summary:
Independent in theory but correlated in real data
Different datasets will exhibit different correlations
Truncated data (W) – Skewness in the distributions

Potential Applications and Benefits:
Overall goal:

- Extract features of lifespans
- Understand patterns
- Cluster artifacts into similar groups
- Correlate patterns with particular malware
Implications & Conclusions

These metrics help examine deeper temporal patterns:

Key to detecting subtle changes and surreptitious anomalies

Proposed 3 metrics that can be computed and tracked with relative ease

Based on stochastic point process models; all have intuitive interpretation

Properties match requirements to identify patterns
Future Work

More data on lifespans: Baselineing and thresholds

Further validation of the metrics

Performance in detecting changes and anomalies in real data

Additional metrics to detect and track patterns

Implementation in information assurance analytics
Thank you!

Questions?

Soumyo Moitra
Senior Member of Technical Staff
CERT/SEI/CMU
Email: smoitra@sei.cmu.edu