Reliability Fundamentals and Analysis Lessons Learned

Maj Brian Stone
Mr. Dan Telford
HQ AFOTEC
Release Date: 12 Mar 18
Overview

• Reliability Fundamentals
 − Definitions
 − Graphs of a failure process
 − Censored Vs. uncensored data

• Lessons learned from reliability analysis
 − Case Study #1: F-22 infant mortality
 − Case Study #2: F-22 weapon system reliability
 − Case Study #3: RQ-1 Predator failure analysis
Reliability Fundamentals
Definitions

• Statistical methods are used to determine part reliability using part failure data

• **Failure** - The inability of a component or system to perform its intended function for a specified time under specified environment conditions

• **Reliability** - The probability that a component or system will perform its required function satisfactorily for a specified period of time when used under stated operating conditions

• **Maintainability** - The probability that a failed component or system will be restored or repaired to a specified condition within a period of time when maintenance is performed in accordance with pre-specified procedures

• **Availability** - The probability that a component or system is performing its required function at a given point in time when used under stated operating conditions
A Word About “Time”

• Unit of measurement for “time”
 − Hours, minutes, seconds
 − Cycles
 − Miles
 − Rounds
 − Etc.

• Whatever “life units” cause the system to age
 − Thermal cycles
 − Take offs and landings
 − Flight time
A failure process, represented by a random variable T (time to failure) may be uniquely characterized by any of the following four functions:

- Cumulative Distribution Function: $F(t)$
- Probability Density Function: $f(t)$
- Reliability Function: $R(t)$
- Hazard Function: $h(t)$
• Consider the following data for failures by unit time
• The ratio of the number of failures between time \([t-1, t)\) and the total number of failures can be considered the probability of failing between time \([t-1, t)\)
• The graph represents the probability distribution function (pdf) of failure times
Cumulative Distribution Function

- At each time step we can calculate the cumulative failures just before time t
- The ratio of the number of the cumulative failures before time t and the total number of failures at each time step is the Cumulative Distribution Function (CDF), aka $F(t)$
- The graph represents the Cumulative Distribution Function (CDF) of failure times
The proportion of systems that haven’t failed by each time step can be calculated using $F(t)$

- This is called the reliability function $R(t)$ or the survivor function
- We compute this value by subtracting the number of failures before time t from the total number of failures
- In general this is computed as $1 - F(t)$
Hazard Function

• Recall that \(f(t) \) is the *unconditional* probability that a unit will fail in the interval \((t-1, t)\)

• The hazard function \(h(t) \) is the *conditional* probability that the unit will fail in the interval \((t-1, t)\), given that it has survived until time \(t-1 \)

• The hazard function is computed as \(\frac{f(t)}{R(t)} \)

\(h(t) \)	\(P(t-1 \leq T < t	T \geq t-1) \)	
\(t \) (Time)	Num	Denom	Ratio
1	0	100	0.00
2	0	100	0.00
3	2	100	0.02
4	13	98	0.13
5	20	85	0.24
6	13	65	0.20
7	14	52	0.27
8	13	38	0.34
9	13	25	0.52
10	6	12	0.50
11	2	6	0.33
12	2	4	0.50
13	2	2	1.00
Exponential Distribution

• The exponential distribution is often used as a probability distribution function $f(t)$

$$f(t) = \lambda e^{-\lambda t}$$

• The CDF $F(t)$ is the integral of $f(t)$

$$F(t) = \int_0^t f(t) = \int_0^t \lambda e^{-\lambda t} = 1 - e^{-\lambda t}$$

• The Reliability Function $R(t)$ is $1 - F(t)$

$$R(t) = 1 - F(t) = 1 - (1 - e^{-\lambda t})$$

$$R(t) = e^{-\lambda t}$$

• The Hazard Function $h(t)$ is

$$h(t) = \frac{f(t)}{R(t)}$$

$$\frac{f(t)}{R(t)} = \frac{\lambda e^{-\lambda t}}{e^{-\lambda t}} = \lambda$$

• For the exponential pdf, the Hazard Function is constant!
Exponential

Exponential pdf

Exponential cdf

Exponential Survival (Reliability)

Exponential Hazard Function
Censored Data

• Reliability data is often censored
• Different types of censoring:
 – Right-censored data – failure times exceed the termination of the test
 – Left-censored data – failure times occur before the first inspection
 – Interval censored data – failure times occur between inspection intervals
 – Random censoring – a component may be damaged during a test
Uncensored Vs. Censored Data

Uncensored Data
Test to failure (data is not truncated)
Uncensored Vs. Censored Data

Censored Data
Test to cut-off time
(data is truncated)
Case Study #1

F-22: Infant Mortality
Case Study #1

• The system under test was the F-22 Raptor (3 aircraft) from the factory

• Wing utilized aircraft with a constant flying schedule
 – 2-3 sorties/weekday across 3 aircraft
 – Average Sortie Duration = 1.5 hours

• The Initial Operational Test and Evaluation (IOT&E) report provided the following reliability measure:
 \[
 \frac{Total \ MX \ Actions}{Total \ Flying \ Hours} = \frac{2073}{573} = 3.62 \ MX \ Actions \ Per \ Flying \ Hour
 \]

• The measure threshold was 3.5 maintenance (MX) actions per flying hour

• There was anecdotal evidence of initially frequent MX repairs that seemed to diminish over time (6 months)
Case Study #1

- Post-report analysis revealed additional insights
- The high MX actions per flying hour was likely due to infant mortality
Case Study #1

• Typical “bathtub” Rate of Occurrence of Failures (ROCOF) curve for repairable systems

Failures Caused by:
Manufacturing defects
Flaws
Defective parts

Failures Caused by:
Fatigue
Corrosion
Aging

Failures Caused by:
“Acts of God”
Human error
Chance events
Case Study #1

• Summary
 - Initial (1-2 months) repair rate of 5-6 MX actions per flying hour
 - At end of test (6 months) repair rate was 2-3 MX actions per flying hour

• Lessons Learned
 - Don’t assume the system’s ROCOF curve is in a steady state
 - Look at your data
 - Understand the context of your data
Case Study #2

F-22: Weapon System Reliability
(Tell the Whole Story)
Case Study #2

• **Weapon System Reliability (WSR)**
 - Measures the probability that a system will perform satisfactorily for a given mission time when used under specified conditions

• The F-22 report provided the standard AFPAM 63-128 WSR metric:
 - Successful Missions / Total Missions
 - WSR was reported as 250/300 = 83.3%

• Anecdotal stories
 - If the aircraft had no failures within the first 15 minutes of flight then a successful sortie was very likely
 - The implication was reliability changed over the course of a sortie
 - Indicative of a non-exponential reliability function (non-constant hazard rate)
 - Average sortie duration (ASD) was 1.5 hours
Case Study #2

- Some JMP analysis corroborated the anecdotal evidence
- The majority of failures took place before 20 minutes of flight time
Case Study #2

• **Summary**
 - Standard reliability metric was reported (WSR)
 - Anecdotal evidence led to a more thorough analysis

• **Lessons Learned**
 - Visualize your data
 - Do not assume weapon system reliability is constant over the mission
Case Study #3

RQ-1 Predator: Problems with Assumption of Exponential Distribution
Case Study #3

• A failure density distribution that has a constant failure rate has an exponential reliability distribution

• Many systems exhibit constant failure rates, and the exponential reliability distribution is the simplest to analyze

• Suppose we tested 500 systems for 2000 hours each and observed 100 failures; first calculate the Mean Time Between Failures (MTBF)

\[
MTBF = \frac{Total\ Time}{\#\ Failures} = \frac{2000 \times 500}{100} = 10,000\ hours
\]

• Let the reliability at time \(t \) be

\[
R(t) = e^{-\lambda t}\ where\ \lambda = \frac{1}{MTBF}
\]

• The reliability at 10,000 hours:

\[
R(t) = e^{-\lambda t} = e^{-\frac{1}{10000} \times 10000} = 0.37
\]

Figure 3. The Exponential Reliability Function whose MTBF is 10,000 hours.
Predator Data

- Test focus: Comm Subsystem
 - Failure is “Lost Link”
 - Always a reboot
 - Reloaded all parameters
- Reliability assumed exponential
 \[MTBF = \frac{\text{Total Time}}{\text{Total Failures}} \]
 \[MTBF = \frac{29 \times 30}{53} = 16.42 \text{ hours} \]
- Suppose we are concerned with reliability at 4 hours:
 \[R(t) = e^{-\lambda t} = e^{\frac{-4}{16.42}} = 0.78 \]
- Problems:
 - Did not treat data as censored
 - Assumed the exponential reliability function
Predator Data

• If we compute the times between failures and account for censoring, the data looks like this
• An “Event Plot” from JMP analysis
• Does it seem reasonable that the reliability at 4 hours is 78% (18/82 failures by 4 hours?)
• What other distributions can be used to model the reliability function?
The lognormal distribution is a common model for failure times.
The Weibull distribution can be used to model failure-time data with a decreasing or an increasing hazard function.
Case Study #3

- JMP lets us compare the fit of various reliability distributions to our failure time data.
- This is the fit for an exponential distribution with $\lambda = 16.42$.
Case Study #3

- On the left is the fit for a lognormal distribution with $\mu = 2.446$ and $\sigma^2 = 0.773$.
• On the left is the fit for a Weibull distribution with $\alpha = 15.448$ and $\beta = 1.738$

Weibull Distribution

Exponential Distribution
Case Study #3

- The JMP “Model Comparisons” output shows that the Weibull has the best fit overall.
- However, which reliability function fits the data best between 0 to 10 hours?
- Using the lognormal reliability function, the reliability at 4 hours is 0.915.
- Recall we computed the reliability at 4 hours to be 0.78 using the exponential function.
Case Study #3

• Summary
 – The assumption that RQ-1 Predator failures had an Exponential reliability function was incorrect
 – The Lognormal distribution was a much better model for the reliability curve

• Lessons Learned
 – Visualize your data
 – Consider multiple models for reliability curves
Questions